Now reading: PI Science: New Dimensions in Quantum Gravity
Menu
Close
Close

Take a self-guided tour from quantum to cosmos!

PI Science: New Dimensions in Quantum Gravity

We have a model for quantum gravity that would work in a simplified universe of two dimensions. For decades, researchers have been trying to create an analogous model that would work in the real universe. Now, a Perimeter researcher has made a discovery about models of random geometry that may get us there.

Senior Postdoctoral Fellow Razvan Gurau is motivated by one of the most basic and pressing questions in modern physics: what is the fundamental nature of spacetime? Quantum mechanics suggests that at some level space could be granular – that is, made of discrete pieces that cannot be broken apart. Field theory, meanwhile, teaches us that at some level space should fluctuate randomly. Can one put these two ideas together into a coherent framework describing randomly fluctuating discrete spaces? To do so would be a major step toward the Holy Grail of today’s physics: unifying quantum field theory and general relativity into a theory of quantum gravity. Developing a theory of quantum gravity has proved to be an extraordinarily difficult problem, one that has stumped physicists for 80 years. About 40 years ago, researchers began to make progress on a simplified version of the problem: imagining space to be just two-dimensional and asking how gravity would look. A highly successful theory of random two-dimensional surfaces has been extensively developed. But, of course, we are not really living in Edwin Abbott’s Flatland. Our universe appears to be four-dimensional – that is, it seems to have three spatial directions and one dimension in time. Since the 1990s, many attempts have been made to build on the success of the theory of two-dimensional random spaces by constructing an analogous theory of random three-dimensional spaces. All proved fruitless. Then, in 2010, Gurau published a series of papers, which showed how the two-dimensional models could be generalized to produce models with three dimensions or more. In other words, they showed the path from a Flatland universe to the real one. This work quickly attracted the attention of other researchers in quantum gravity, both at Perimeter and at other leading centres around the world. The last year and a half has seen remarkable and rapid developments in quantum gravity. For his seminal contributions in opening this new research direction, Gurau has been awarded the Hermann Weyl Prize for 2012. This prize, which is named after renowned German mathematical physicist Hermann Weyl, is awarded every two years. This is the second time a Perimeter researcher has won the award, after Senior Postdoctoral Fellow Giulio Chiribella received the honour in 2010. Gurau will receive his prize in a ceremony at the International Colloquium on Group Theoretical Methods in Physics, which will be held in China later this summer.

Further Exploration

Related

Inspiring Future Women in Science event gives young women a chance to see themselves in STEM careers.

/Apr 12, 2024

Astronomers capture polarized light from the supermassive black hole at the heart of our galaxy in unprecedented detail.

/Mar 27, 2024

Fun and intense academic research are a great mix at this year’s winter school.

/Mar 13, 2024

One of Perimeter’s recent Simons Emmy Noether Fellows reflects on her fruitful time in Waterloo.

/Mar 07, 2024

A research team from Perimeter, Zapata AI, and Vector Institute sets up a “race” between quantum and classical AI models.

/Feb 29, 2024

Ancient Egyptian astronomical texts are difficult to interpret. Computer modeling might help.

/Feb 22, 2024

Perimeter students, researchers, and staff share their experiences in celebration of the International Day of Women and Girls in Science.

/Feb 09, 2024

Perimeter postdoctoral researcher Barbara Šoda has been using spectral geometry to describe “fluctuating” spacetime.

/Feb 07, 2024

A preponderance of astronomical evidence suggests that the galaxy is filled with dark matter. Despite knowing remarkably little about what this dark matter is, we expect that it is not composed of ordinary matter. Though we have spent 30 years expecting that it may be related to pressing open problems in fundamental physics, a heroic […]

/Feb 01, 2024

Perimeter Associate Faculty member Roger Melko says large language models used in chatbots will advance the abilities of large-scale quantum computer simulations.

/Jan 25, 2024